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Abstract. Delta robot is one of the most known parallel systems which
possesses high stiffness and accuracy. In order to build a system that
endows the robot to perform the desired tasks, an accurate and vali-
date the dynamic model is required. In recent years, researchers have
been focused on the construction of serial structured robots. However,
few researchers tried to evolve the delta robots in such a system. In this
work, the multibody system dynamics (MBS) approach is used to study
the kinematics and dynamics of delta robots. A systematic approach is
developed based on load assumption due to end-effector movements. The
multibody model is constructed using Matlab Symbolic Toolbox. More-
over, D3S-800 is utilized in this study to validate the multibody model.
The comparison of experimental data and numerical solution shows a
very good agreement and consequently, the multibody model obtained
is suitable for parameter identification, control and design optimization
of a delta robot system.
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1 Introduction

Robot structures possess a good variety of architectural designs adapted to the
different industrial and non-industrial operations. While serial manipulators are
the most common dominant type of robots in the industry because of their
high flexibility. The parallel structured robots provide a good solution to some
inconvenient situations of the serial manipulators, such as the situations where
the robot is required to resist high loads [10].

Delta robot is one common configuration of parallel robots and what makes
the delta robot fascinating is that unlike most of robotic applications which
are biologically inspired [14]. Delta robot perception was a mechanical structure
design that depended completely on the theory of machines and the correlated
relation between the mechanical linkages [5]. Recently, researchers made a lot of
effort into modeling, design and control of delta robots using traditional dynam-
ics methods [6,8]. On the other hand, the multibody system serves as a basis for
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many modern models of complex systems and has been applied in many areas
of science. The multibody system approach will be used for the dynamic model-
ing of delta robot in order to increase the efficiency of the system and enhance
system control [2]. Also, the multibody model results were verified using actual
delta robot system.

The remainder of this study is organized as follows: Sect. 2 introduces the
delta robot as a multibody system. In Sect. 3, the constraint’s function is
expressed, and the model is constructed. Section 4 presents numerical simula-
tion and experimental validation that are followed by the conclusion in Sect. 5.

2 Delta Robot as a Multibody System

In this study, D3S-800 delta robot used, in which The robot has three degrees
of freedom, the end-effector is free to move in three translational motions along
XYZ axes, see Fig. 1. In addition, The manipulator can achieve rotational motion
about Z-axis by means of an actuator installed to the fixed base and the rota-
tional motion is transmitted mechanically to the end-effector [3]. The compu-
tational model is established to determine the kinematic relationship between
the system coordinates. We apply the MBS mathematical calculation process to
the incremental robot mechanism and for simplification, the rotational degree
of freedom about Z-axis is not considered. Delta robot as a multibody system
consists of a fixed base, three arms, six forearms, six rods and an end-effector.
To define system bodies, local frames are assigned to delta robot bodies and the
base frame is considered the reference coordinate. For simplicity of the compu-
tations, the global frame is assigned to the projection of the fixed platform in
the same plane enclosing the three points ai, which are the positions of revolute
joints between the base frame and the active arms [13]. Each single chain shown
in Fig. 1b consists of a revolute joint directly actuated by means of an electri-
cal motor. The forearms or the passive arms are connected to the active arms
at points bi1 and bi2, the above two points are connected to the movable plat-
form in points ci2 and ci1 forming the closed loop bi1, bi2, ci2 and ci1. Another
closed-loop si1, si2, ti2 and ti1 formed by the connecting rods which functions
are to maintain the connectivity of the spherical joints and to prevent the fore-
arms from the undesired rotations about their longitudinal axis. At the initial
home position, an end-effector frame is collinear with the Z-axis of the reference
coordinate.
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(a) CAD Model of delta robot system (b) Parameters assignment of a general chain

Fig. 1. Multibody model of delta robot system

3 Mathematical Model of Delta Robot

The model of the delta robot shown in Fig. 1a, can be constructed, without loss
of generality, as shown in Table 1 for the first chain. Let the contact point P
be located on the end-effector frame. The system of generalized coordinates is
denoted by q and can define function in Euler angles φ, θ and ψ [4]. To avoid a
singularity during simulation, the three Euler angles will convert to four Euler
parameters [q10 q11 q12 q13 ] [12]. The generalized coordinates of the fixed base
including translation and orientation are defined as:

q1 =
[
x1 y1 z1 q10 q11 q12 q13

]
(1)

The global portion vector of that point can be expressed as:

ri = Ri + Ai ūi
p (2)

Table 1. Components of Delta robot system

Joint number Joint type Body(i) Body(j)

1 Fixed Fixed Base Ground

2 Revolute Arm Fixed Base

3 Spherical Forearam1 Arm

4 Revolute Rod1 Forearam1

5 Revolute Forearam2 Rod1

6 Revolute Rod2 Forearam2

7 Spherical Forearam1 End-effector
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where ri, is the global position of an arbitrary point, Ri, is the global position
of the origin of the end-effector coordinate system, and Ai is the transformation
matrix function on the generalized coordinates. It is clear from Eq. (2) that the
global position vector of an arbitrary point on the body coordinate system can
be written in terms of the rotational coordinate of the body, as well as the
translation of the frame-origin of the body. In order to avoid singularities, Euler
parameters are used to describe the orientation of the system bodies and result
coordinates can be converted back to cartesian coordinates [11]. The constraints
function of delta robot can be obtained using multibody constraints equation of
Rigid, Revolute and Spherical joints. Equation 3 illustrates constraints equations
of rigid joint between fixed base and ground.

C1
(qg,q1,t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

y1

z1

1 − 2(q1
2
)2 − 2q1

0
q1
2

− 2q1
1
q1
3

− 2(q1
1
)2

2(q1
1
)2 + 2(q1

2
)2 − 2q1

0
q1
2

− 2q1
1
q1
3

− 1
2(q1

1
)2 + 2(q1

2
)2 − 2q1

0
q1
2

− 2q1
1
q1
3

− 1
(q1

0
)2 + (q1

1
)2 + (q1

2
)2 + (q1

3
)2 − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (3)

where qg is generalized coordinate vector for ground and it equal zero and
q1 is generalized coordinate vector of the fixed base. Figure 2a shows revolute
joint between Arm1 and fixed base. The constraints equations of revolute joints
between Arm1 and fixed base can be written as:
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(a) Revolute joint (b) Spherical joint

Fig. 2. Multibody joint constraints
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where generalized coordinates of Arm1 is define as q2 = [x2 y2 z2 q20 q21 q22 q23 ].
Figure 2b shows spherical joint between the forearm and end-effector. The con-
straints equation of spherical joints between Forearam1 and Arm can be written
function on translation constraints as:

C3
(q2,q3,t) =

⎡

⎣
x2 − x3

y2 − y3

z2 − z3

⎤

⎦ = 0 (5)

Constraints equations for other joints can be defined similarly to spherical and
revolute joints. The dynamic equations that govern the motion of system bodies
can be systematically obtained using Lagrange formulation as [1]:

[
M CT

q

Cq 0

] [
q̈
λ

]
=

[
Q
Qd

]
(6)

where M is the system mass matrix, Cq is the system Jacobian matrix Cq =
∂C(q,t)

∂q , λ the vector of Lagrange multipliers and Qd is a vector absorb terms
that are quadratic in the velocity and Q is a vector of external applied forces
and can be written as:

Q =
[
Qi

exR

Qi
exθ

]
=

[
F i

GiT M i

]
=

[
F i

ḠiT M̄ i

]
(7)

where Qi
exR is the force associated with the translation coordinates and Qi

exθ is
the force associated with the orientation coordinates. F i and M̄ i are the forces
and moment vectors defined in the local coordinate system of the body. The
matrix Ḡi is define function on Euler parameter generalized coordinates and
can be written as:

Ḡi = 2 ∗
⎡

⎣
−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0

⎤

⎦ (8)

Equation of motion Eq. 6 yields a system of differential algebraic equations [7]. A
set of initial parameters including positions and velocities from the CAD model
are used to start the dynamic simulation [4]. The vector q̈ can be integrated in
order to determine the coordinates and velocities. The vector λ can be used to
determine the generalized reaction forces that can be used to establish optimiza-
tion of the design process. Because the direct numerical solution of differential
algebraic equations associated with the constrained dynamics of a multibody
system poses several computational difficulties, a post-stabilization process is
used to brings the solution back to the invariant manifold.

4 Numerical Simulation and Experimental Validation

In this section, Multibody model results are represented and compared with
experimental data. A mathematical model of the delta robot is developed
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by applying multibody dynamics theory based on the Lagrange formulation
described in the previous section. Kinematics results include system displace-
ments and dynamic results included reaction forces and torques acting on delta
robot bodies are computed. The parameters of the D3S-800 delta system are pro-
vided in Table 2. The fixed base radius is the radius of a circle that passes through
the three points of the revolute joints of arms, while the radius of the movable
platform that carries end-effector is the radius of a circle that passes through the
six points of the lower spherical joints between the platform and the forearms.
By applying an initial motion of 100 mm/s with 45◦ in XY-plane on the end-
effector and keep the distance between the fixed frame and end-effector frame
847 mm in the negative Z direction, the corresponding structural displacement of
the delta robot links can be obtained. The simulation is performed using Matlab
and Adams-Bashforth-Moulton (ODE113) as the numerical integrator for 5 s.
Figure 3a shows the constraints violation due to the revolute joint between the
arm and fixed base [9]. The violation does not exceed 3 ∗ 10−13 which indicates
the computational efficiency of the multibody system model. Noted that, the
constraint equation C6 is an Euler parameter constraint that must be added
in case of using Euler parameter to define system generalized coordinates. By
integrating the system accelerations forward, the system bodies velocities and
configurations are computed. According to initial input, the end-effector dis-
placement in XY-plane and the distances in Z-direction constant, see Fig. 3b.
Reactions forces acting on deferent bodies of delta robot system are computed
from the MBS model as a function of generalized coordinates using Lagrange
multipliers. Figures 4 show reaction forces acting on a fixed base including trans-
lation forces and moments. As shown in Fig. 4a, the reaction force in Z-direction
is due to the wight. Likewise, other system body’s reaction forces can be com-
puted. Experimental work is carried out in order to validate the dynamic model
of the delta robot. As shown in Fig. 5, the D3S-800 delta robot system consists
of robot arms, motors, control unite, encoder and programming unite. Figure 6
shows the comparisons between the output rotor velocity of the MBS model and
the experimental data. Since the multibody model and experiment data have
similar results, the MBS model is accurate and can be useful for establishing the
optimization process of delta robot system design and control.

Table 2. Delta robot parameters employed in the numerical simulation

Components Dimensions (mm) Mass (kg) Ixx(Kg ·m2) Iyy(Kg ·m2) Izz(Kg ·m2)

Fixed base R = 125 30 0.52202 0.52202 0.88497

Arm L = 370 6.2 0.00510 0.12448 0.125448

Forearm L = 960 1.65 0.13940 0.00006 0.13940

Connecting rod L = 95 0.2 0.0000147 0.000101 0.000101

End-effector r = 62 0.9 0.001031 0.001031 0.002019
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Fig. 3. Constraints violation and global position of the point P

Fig. 4. Reaction forces due to revolute joint

Fig. 5. D3S-800 delta robot system
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Fig. 6. Angular speed of motor 1

5 Conclusion

In this paper, an efficient modeling procedure for the delta robot system is devel-
oped based on Multibody system dynamics. The symbolic and computational
work have been carried out using Matlab. The symbolic derivation is carried
out and the explicit equations of motion of the delta robot have been derived.
The solution of the equations of motion involves the system coordinates and the
associated Lagrange multipliers as well. The paper describes an experimental
test-rig of the D3S-800 delta robot system in front of end-effector movement
and the measured motors speed is collected and compared with the multibody
model. The comparison shows a very good agreement which encourages the
enhancement of the model by examining unconventional operating conditions.
Moreover, Lagrange multipliers can be used to estimate the generalized reaction
forces which can be utilized in the optimization of delta robot design. In going
and future work, multibody model will be used for parameters identification and
design optimization of the delta robot.
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